Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Alkaline metal oxoantimonates(III), $A_{3}\left[\mathrm{SbO}_{3}\right]$ ($A=\mathrm{K}$ or Cs)

Franziska Emmerling and Caroline Röhr*

Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany
Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de

Received 28 February 2001
Accepted 11 April 2001
The two title trialkaline trioxoantimonates(III), tripotassium trioxoantimonate(III), $\mathrm{K}_{3}\left[\mathrm{SbO}_{3}\right]$, (I), and tricaesium trioxoantimonate(III), $\mathrm{Cs}_{3}\left[\mathrm{SbO}_{3}\right]$, (II), crystallize in the cubic $\mathrm{Na}_{3}\left[\mathrm{AsS}_{3}\right]$ structure type in space group $P 2_{1} 3$. The structures show discrete Ψ-tetrahedral $\left[\mathrm{SbO}_{3}\right]^{3-}$ anions with $C_{3 v}$ pointgroup symmetry. The $\mathrm{Sb}-\mathrm{O}$ distances are 1.923 (4) \AA in (I) and 1.928 (2) \AA in (II), and the $\mathrm{O}-\mathrm{Sb}-\mathrm{O}$ bond angles are $99.5(2)^{\circ}$ in (I) and $100.4(1)^{\circ}$ in (II).

Comment

The oxoantimonates(III), $A \mathrm{SbO}_{2}[A=\mathrm{K}, \mathrm{Rb}$ (Hirschle \& Röhr, 2000) or Cs (Hirschle \& Röhr, 1998)], are isotypic with the corresponding bismuthates $(A=\mathrm{K}, \mathrm{Rb}$ or Cs ; Zoche \& Jansen, 1998) and contain, in accordance with the lone pair on $\mathrm{Sb}^{\mathrm{III}} / \mathrm{Bi}^{\mathrm{III}}$, the group V atoms coordinated by four O atoms in a Ψ-trigonal-bipyramidal geometry. In the compounds $A_{4}\left[\mathrm{Sb}_{2} \mathrm{O}_{5}\right](A=\mathrm{K}, \mathrm{Rb}$ or C; Hirschle \& Röhr, 2000), two $\left[\mathrm{SbO}_{3}\right] \Psi$-tetrahedra are connected via an oxygen ligand to form $\left[\mathrm{O}_{2} \mathrm{Sb}-\mathrm{O}-\mathrm{SbO}_{2}\right]^{4-}$ 'butterfly' anions. In contrast, $\mathrm{K}_{4}\left[\mathrm{Bi}_{2} \mathrm{O}_{5}\right]$ (Zoche et al., 1998) contains $\left[\mathrm{Bi}_{4} \mathrm{O}_{10}\right]^{8-}$ anions, with Bi in both Ψ-trigonal-bipyramidal and Ψ-tetrahedral coordination by oxygen. The bismuthates $A_{3}\left[\mathrm{BiO}_{3}\right]$, with Ψ-tetrahedral anions as characteristic building blocks, are known for the whole series of alkaline metals A. The isotypic sodium (Stöver \& Hoppe, 1980) and potassium (Zoche \& Jansen, 1997b) compounds can be described as defect NaCl variants, $\left[A_{3} \mathrm{Bi}\right]\left[\mathrm{O}_{3}\right]$, i.e. the cations A and Bi form a face-centred cubic sublattice $\left(\mathrm{Cu}_{3} \mathrm{Al}\right.$ type). In the rubidium (Zoche \& Jansen, 1997b) and caesium (Zoche \& Jansen, 1997a) phases, the cations are arranged in a body-centred cubic sublattice $\left(\mathrm{Fe}_{3} \mathrm{Al}\right.$ type). For the corresponding oxoantimonate series $A_{3}\left[\mathrm{SbO}_{3}\right]$, only the sodium compound has been described in the literature to date (Stöver \& Hoppe, 1980) and is isotypic with the Na and K bismuthates mentioned above. We present here the structures of two further oxoantimonates, viz. $\mathrm{K}_{3}\left[\mathrm{SbO}_{3}\right]$, (I), and $\mathrm{Cs}_{3}\left[\mathrm{SbO}_{3}\right]$, (II).

The isotypic compounds (I) and (II) crystallize in the cubic space group $P 2_{1} 3$ with the $\mathrm{Na}_{3}\left[\mathrm{AsS}_{3}\right]$ structure type (Palazzi, 1976), and are thus isotypic with the Rb and Cs oxobis-
muthates and most alkaline metal thio- and selenoarsenates, -antimonates and -bismuthates. $\mathrm{Rb}_{3}\left[\mathrm{SbO}_{3}\right]$ forms the same structure type, with a lattice constant (refined from X-ray powder data) of 8.9523 (6) Å.

The crystal structures of (I) and (II) contain $\left[\mathrm{SbO}_{3}\right]^{3-}$ anions with crystallographic $C_{3 v}$ point-group symmetry and nearly equal $\mathrm{Sb}-\mathrm{O}$ distances for the two compounds; the $\mathrm{O}-$ $\mathrm{Sb}-\mathrm{O}$ bond angles are also very similar. The bond lengths are

Figure 1
Molecular view of the $\left[\mathrm{SbO}_{3}\right]^{3-} \Psi$-tetrahedron together with the coordinating Cs cations in (II) (75% probability ellipsoids).
thus slightly longer than those observed in the sodium phase ($\mathrm{Sb}-\mathrm{O}=1.890 \AA$).

The oxygen ligands are octahedrally coordinated by one Sb atom and five A cations (Fig. 1). The oxoantimonate ions form a face-centred cubic arrangement (Fig. 2), in which the alkaline metal cations occupy all tetrahedral and octahedral

Figure 2
A view of the unit cell of the $A_{3}\left[\mathrm{SbO}_{3}\right]$ compounds (small light grey balls represent K or Cs and dark grey balls represent O atoms)
interstices. In an alternative description of the structure according to the concept of O'Keeffe \& Hyde (1985), the A and Sb atoms form a 3:1 superstructure of a body-centred cubic lattice, the $\mathrm{Fe}_{3} \mathrm{Al}$ structure type. Whereas the corresponding $\mathrm{K}_{3} \mathrm{Sb}$ phase (Emmerling \& Röhr, 2001) crystallizes with a superstructure of the hexagonal $\mathrm{Cu}_{3} \mathrm{P}$ type, the direct analogy of the metal-atom arrangement in the intermetallic phase and the oxide is observed for $\mathrm{Cs}_{3} \mathrm{Sb}$ (Emmerling \& Röhr, 2001) and (II). The unit-cell volumes are also comparable $\left[762.8\right.$ (1) \AA^{3} in (II) and 763.7 (1) \AA^{3} in $\left.\mathrm{Cs}_{3} \mathrm{Sb}\right]$.

inorganic compounds

Experimental

Crystals of (I) were grown from a mixture containing KO_{2} (Fluka AG, 99.0\%) , K (Alkali-Metallhandel GmbH Bonn, 98.0\%) and Sb powder (Sigma-Aldrich, 99.8%) in a molar ratio of 0.5:1.5:2. The mixture was heated to 973 K and then cooled to 573 K at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. The furnace was then turned off. For (II), $\mathrm{CsO}_{2}(803 \mathrm{mg}, 4.87 \mathrm{mmol})$ was reacted with powdered $\mathrm{Sb}(198 \mathrm{mg}, 1.62 \mathrm{mmol})$ in a corundum crucible under an argon atmosphere. The mixture was heated to 973 K over a period of 3.5 h and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. The X-ray powder pattern of the sample [Stadi P diffractometer with linear PSD (position sensitive detector); Stoe \& Cie, Darmstadt] could be indexed with the single-crystal data of (II) and showed weak reflections of $\mathrm{Cs}_{3}\left[\mathrm{SbO}_{4}\right]$ and elemental Sb . Both title compounds formed hydroscopic colourless crystals, which were handled in a dry box under argon and prepared in capillaries filled with dried oil.

Compound (I)

Crystal data

$\mathrm{K}_{3}\left[\mathrm{SbO}_{3}\right]$
$M_{r}=287.05$
Cubic, $P 21_{1} 3$
$a=8.352(5) \AA$
$V=582.7(5) \AA^{3}$
$Z=4$
$D_{x}=3.272 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$\quad T_{\min }=0.497, T_{\max }=0.508$
1510 measured reflections
266 independent reflections (plus
189 Friedel-related reflections)

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }<0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.054$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{\AA^{-3}}$
$S=1.04$
455 reflections
20 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0219 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

$$
\begin{aligned}
& R_{\text {int }}=0.090 \\
& \theta_{\max }=27.4^{\circ} \\
& h=0 \rightarrow 10 \\
& k=-10 \rightarrow 10 \\
& l=-10 \rightarrow 0 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=3.8-29.3^{\circ}$
$\mu=6.77 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.1 \times 0.1 \times 0.1 \mathrm{~mm}$
,

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I).

$\mathrm{Sb}-\mathrm{O} 1(\times 3)$	$1.923(4)$	$\mathrm{K} 2-\mathrm{O} 1(\times 3)$	$2.734(4)$
$\mathrm{K} 1-\mathrm{O} 1(\times 3)$	$2.758(5)$	$\mathrm{K} 2-\mathrm{O} 1(\times 3)$	$2.961(5)$
$\mathrm{K} 1-\mathrm{O} 1(\times 3)$	$2.922(5)$	$\mathrm{K} 3-\mathrm{O} 1(\times 3)$	$2.659(4)$
$\mathrm{O} 1-\mathrm{Sb}-\mathrm{O} 1$	$99.50(15)$		

Compound (II)

Crystal data
$\mathrm{Cs}_{3}\left[\mathrm{SbO}_{3}\right]$
$M_{r}=568.48$
Cubic, $P 2_{1} 3$
$a=9.1369$ (10) \AA
$V=762.78(14) \AA^{3}$
$Z=4$
$D_{x}=4.950 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 25 reflections
$\theta=2.3-32.8^{\circ}$
$\mu=17.65 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.11 \times 0.08 \times 0.06 \mathrm{~mm}$

